Herpes simplex virus type 1 prereplicative sites are a heterogeneous population: only a subset are likely to be precursors to replication compartments

Author:

Lukonis C J1,Burkham J1,Weller S K1

Affiliation:

1. Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA.

Abstract

When herpes simplex virus type 1 (HSV-1) DNA replication is blocked by viral polymerase inhibitors, such as phosphonoacetic acid (PAA) or acyclovir (ACV), UL29 (ICP8) localizes to numerous punctate nuclear foci which are called prereplicative sites. Since this pattern can form in cells infected with mutants which are defective in UL5, UL8, UL9, or UL52 in the presence of polymerase inhibitors (C. J. Lukonis and S. K. Weller, J. Virol. 70:1751-1758, 1996; L. M. Liptak, S. L. Uprichard, and D. M. Knipe, J. Virol. 70:1759-1767, 1996), we previously proposed that it is unlikely that these numerous UL29 foci actually represent a functional subassembly of viral replication proteins that could lead to the formation of replication compartments (C. J. Lukonis and S. K. Weller, J. Virol. 70:1751-1758, 1996). In this paper, we have investigated the requirement for formation of the prereplicative site pattern by using double mutants of HSV. From the analysis of mutants lacking both UL5 and UL9, we conclude that neither viral helicase is required for the prereplicative site pattern to form as long as a polymerase inhibitor is present. From the analysis of mutants defective in both UL30 and UL5, we suggest that the prereplicative site pattern can form under conditions in which viral and/or cellular polymerases are inhibited. Furthermore, reexamination of the UL29 staining pattern in cells infected with wild-type virus in the presence of PAA reveals that at least two different UL29 staining patterns can be detected in these cells. One population of cells contains numerous (greater than 20) punctate UL29 foci which are sites of cellular DNA synthesis. In another population of cells, fewer punctate foci (less than 15) are detected, and these structures do not colocalize with sites of cellular DNA synthesis. Instead, they colocalize with PML, a component of nuclear matrix structures known as ND10. We propose that ND10-associated UL29 sites represent domains at which replication compartments form.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3