Author:
Rose Sasha J.,Bermudez Luiz E.
Abstract
ABSTRACTMycobacterium aviumsubsp.hominissuisis an opportunistic human pathogen that has been shown to form biofilmin vitroandin vivo. Biofilm formationin vivoappears to be associated with infections in the respiratory tract of the host. The reasoning behind howM. aviumsubsp.hominissuisbiofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed anin vitromodel using THP-1 human mononuclear phagocytes cocultured with establishedM. aviumsubsp.hominissuisbiofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis.M. aviumsubsp.hominissuisbiofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. aviumsubsp.hominissuisactivity when added to THP-1 cells infected with planktonicM. aviumsubsp.hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with theM. aviumsubsp.hominissuisbiofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonicM. aviumsubsp.hominissuisinfection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination ofM. aviumsubsp.hominissuis. Our data collectively indicate thatM. aviumsubsp.hominissuisbiofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm-associated infection to persist.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献