Selection and characterization of replication-competent revertants of a Rous sarcoma virus src gene oversplicing mutant

Author:

Zhang L1,Simpson S B1,Stoltzfus C M1

Affiliation:

1. Department of Microbiology, University of Iowa, Iowa City 52242, USA.

Abstract

All retroviruses require both unspliced and spliced RNA for a productive infection. One mechanism by which Rous sarcoma virus achieves incomplete splicing involves suboptimal env and src 3' splice sites. We have previously shown that mutagenesis of the nonconsensus src polypyrimidine tract to a 14-nucleotide uninterrupted polypyrimidine tract results in an oversplicing phenotype and a concomitant defective replication in permissive chicken embryo fibroblasts. In this report, we show that splicing at the src 3' splice site (3'ss) is further negatively regulated by the suppressor of src splicing cis element which is located approximately 100 nucleotides upstream of the src 3'ss. The increase in splicing at the src 3'ss results in a corresponding increase in splicing at a cryptic 5'ss within the env gene. Two classes of replication-competent revertants of the src oversplicing mutant (pSAP1) were produced after infection, and these mutants were characterized by molecular cloning and sequence analysis. Class I revertants are transformation-defective revertants in which the src 3'ss and the src gene are deleted by homologous recombination at several different sites within the imperfect direct repeat sequences that flank the src gene. Cells infected with these transformation-defective revertants produce lower levels of virus particles than cells infected with the wild-type virus. Class II revertants bear small deletions in the region containing the branchpoint sequence or polypyrimidine tract of the src 3'ss. Insertion of these mutated sequences into pSAP1 restored inefficient splicing at the src 3'ss and efficient replication in chicken embryo fibroblasts. All of these mutations caused reduced splicing at the src 3'ss when they were tested in an in vitro splicing system. These results indicate that maintenance of a weak src 3'ss is necessary for efficient Rous sarcoma virus replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3