Affiliation:
1. Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
Abstract
ABSTRACT
We evaluated the ability of the new VITEK 2 version 4.01 software to identify and detect glycopeptide-resistant enterococci compared to that of the reference broth microdilution method and to classify them into the
vanA, vanB, vanC1
, and
vanC2
genotypes. Moreover, the accuracy of antimicrobial susceptibility testing with agents with improved potencies against glycopeptide-resistant enterococci was determined. A total of 121 enterococci were investigated. The new VITEK 2 software was able to identify 114 (94.2%) enterococcal strains correctly to the species level and to classify 119 (98.3%) enterococci correctly to the glycopeptide resistance genotype level. One
Enterococcus casseliflavus
strain and six
Enterococcus faecium vanA
strains with low-level resistance to vancomycin were identified with low discrimination, requiring additional tests. One of the
vanA
strains was misclassified as the
vanB
type, and one glycopeptide-susceptible
E. facium
wild type was misclassified as the
vanA
type. The overall essential agreements for antimicrobial susceptibility testing results were 94.2% for vancomycin, 95.9% for teicoplanin, 100% for quinupristin-dalfopristin and moxifloxacin, and 97.5% for linezolid. The rates of minor errors were 9% for teicoplanin and 5% for the other antibiotic agents. The identification and susceptibility data were produced within 4 h to 6 h 30 min and 8 h 15 min to 12 h 15 min. In conclusion, use of VITEK 2 version 4.01 software appears to be a reliable method for the identification and detection of glycopeptide-resistant enterococci as well as an improvement over the use of the former VITEK 2 database. However, a significant reduction in the detection time would be desirable.
Publisher
American Society for Microbiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献