Synergy among Differentially Regulated Repressors of the Ribonucleotide Diphosphate Reductase Genes of Saccharomyces cerevisiae

Author:

Klinkenberg Lee G.1,Webb Travis1,Zitomer Richard S.1

Affiliation:

1. Department of Biological Sciences, University at Albany/SUNY, Albany, New York 12222

Abstract

ABSTRACT The Ssn6/Tup1 general repression complex represses transcription of a number of regulons through recruitment by regulon-specific DNA-binding repressors. Rox1 and Mot3 are Ssn6/Tup1-recruiting, DNA-binding proteins that repress the hypoxic genes, and Rfx1 is a Ssn6/Tup1-recruiting, a DNA-binding protein that represses the DNA damage-inducible genes. We previously reported that Rox1 and Mot3 functioned synergistically to repress a subset of the hypoxic genes and that this synergy resulted from an indirect interaction through Ssn6. We report here cross-regulation between Rox1 and Mot3 and Rfx1 in the regulation of the RNR genes encoding ribonucleotide diphosphate reductase. Using a set of strains containing single and multiple mutations in the repressor encoding genes and lacZ fusions to the RNR2 to -4 genes, we demonstrated that Rox1 repressed all three genes and that Mot3 repressed RNR3 and RNR4 . Each repressor could act synergistically with the others, and synergy required closely spaced sites. Using artificial constructs containing two repressor sites, we confirmed that all three proteins could function synergistically but that two Rox1 sites or two Rfx1 sites could not. The significance of this synergy lies in the ability to repress gene transcription strongly under normal growth conditions, and yet allow robust induction under conditions that inactivate only one of the repressors. Since the interaction between the proteins is indirect, the evolution of dually regulated genes requires only the acquisition of closely spaced repressor sites.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3