Counterprotective effect of erythrocytes in experimental bacterial peritonitis is due to scavenging of nitric oxide and reactive oxygen intermediates

Author:

Kim Y M1,Hong S J1,Billiar T R1,Simmons R L1

Affiliation:

1. Department of Surgery, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA.

Abstract

Erythrocytes (RBC) in the peritoneal cavity significantly increase the lethality of bacterial peritonitis. The lethality is known to be associated with, and perhaps due to, increased bacterial counts in the peritoneal cavity. The mechanism is unknown. In this study, we investigated the hypothesis that RBC scavenge reactive oxygen intermediates (ROI) and nitric oxide (NO), so that the counterprotective effect is due to a loss of the microbiostatic activity of both ROI and NO. To study this effect, rats were subjected to a peritoneal inoculation of live Escherichia coli without RBC (nonlethal dose) or with RBC (lethal dose). The adjuvant effect of RBC was not modified by NG-monomethyl-L-arginine (NMA, an NO synthase inhibitor), superoxide dismutase, catalase, mannitol, or a combination of these agents. Furthermore, the increased number of bacteria in the peritoneal cavity in the presence of RBC was unaffected by these treatments. The administration of NMA with bacteria alone (no RBC) converted a nonlethal model into a lethal one associated with higher intraperitoneal bacterial counts. A similar effect was seen with superoxide dismutase and catalase but not with mannitol. During bacterial peritonitis in the absence of RBC, superoxide and NO formation (determined by the total nitrite plus nitrate formed) was detected in the ascites and inducible NO synthase mRNA expression was present in the peritoneal cells. In the absence of RBC, superoxide was detected and oxidation of dihydrorhodamine to rhodamine was observed, indicating that peroxynitrite was produced. Both were blocked by the inclusion of RBC. Preinjection with a low inoculum of killed bacteria protected the rats from a subsequent lethal peritoneal bacterial challenge; this effect was reversed by scavenging ROI and NO. The protective effect of killed bacterial pretreatment was lost when RBC were placed in the peritoneal cavity. In vitro bactericidal activity of NO- and ROI-generating macrophages was also inhibited by RBC or by inhibiting ROI and NO formation. Taken together, these data are consistent with the hypothesis that RBC can impair bacterial clearance by removing both NO and ROI, suggesting that NO in combination with superoxide may be important to the antimicrobial defenses of the peritoneal cavity.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3