Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa

Author:

Loh B,Grant C,Hancock R E

Abstract

The mode of interaction of the polycationic aminoglycoside antibiotics with the surface of Pseudomonas aeruginosa cells was studied with the hydrophobic fluorescent probe 1-N-phenylnaphthylamine (NPN). The addition of the aminoglycoside gentamicin to intact cells in the presence of NPN led to a shift in the fluorescence emission maximum from 460 to 420 nm. At the same time the NPN fluorescence intensity increased fourfold. Gentamicin caused no such effects when added to outer membrane vesicles, suggesting that the increased fluorescence resulted from the interaction of gentamicin with intact cells. Gentamicin-promoted NPN uptake was inhibited by the divalent cations Mg2+ and Ca2+, but occurred in the absence of gentamicin transport across the inner membrane. Low concentrations of gentamicin (2 micrograms/ml) caused NPN fluorescence to increase over a period of 4 min in a sigmoidal fashion. At higher concentrations (50 micrograms/ml) the increase occurred within a few seconds. The final fluorescence intensity was almost independent of the gentamicin concentration. A centrifugation technique was used to demonstrate that gentamicin caused actual uptake of NPN from the supernatant. The initial rate of NPN uptake varied according to the gentamicin concentration in a sigmoidal fashion. Similar data were obtained for seven other aminoglycoside antibiotics. The data, when reanalyzed as a Hill plot, gave a series of lines with a mean slope (the Hill number) of 2.26 +/- 0.26, suggesting that the interaction of aminoglycosides with the cell surface to permeabilize it to NPN involved at least three sites and demonstrated positive cooperativity. There was a statistically significant relationship between the pseudoassociation constant K, from the Hill plots and the minimal inhibitory concentrations for the eight antibiotics. These results are consistent with the concept that aminoglycosides interact as a divalent cation binding site on the P. aeruginosa outer membrane and permeabilize it to the hydrophobic prove NPN.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference18 articles.

1. Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa;Bryan L. E.;Antimicrob. Agents Chemother.,1976

2. An evaluation of N-pheny1-1-napthylamine as a probe of membrane energy state in Escherichia coli;Cramer W. A.;Biochim. Biophys. Acta,1976

3. Freifelder D. 1982. Physical biochemistry 2nd ed. W. H. Freeman and Co. San Francisco.

4. Gomperts B. F. Lantelme and R. Stock. 1970. Ion association reactions with biological membranes studied with the fluores

5. Aminoglycoside uptake and mode of action-with special reference to streptomycin and gentamicin. I. Antagonists and mutants;Hancock R. E. W.;Antimicrob. Chemother.,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3