Comparison and Evaluation of Real-Time PCR, Real-Time Nucleic Acid Sequence-Based Amplification, Conventional PCR, and Serology for Diagnosis of Mycoplasma pneumoniae

Author:

Templeton Kate E.1,Scheltinga Sitha A.1,Graffelman A. Willy2,van Schie Jolanda M.1,Crielaard Jantine W.1,Sillekens Peter3,van den Broek Peterhans J.4,Goossens Herman15,Beersma Matthias F. C.1,Claas Eric C. J.1

Affiliation:

1. Departments of Medical Microbiology

2. Infectious Diseases, Center of Infectious Diseases

3. BioMerieux, Boxtel, The Netherlands

4. Department of General Practice and Nursing Home Medicine, Leiden University Medical Center, Leiden

5. Department of Microbiology, University of Antwerp, Antwerp, Belgium

Abstract

ABSTRACT Mycoplasma pneumoniae is a common cause of community-acquired pneumonia and lower-respiratory-tract infections. Diagnosis has traditionally been obtained by serological diagnosis, but increasingly, molecular techniques have been applied. However, the number of studies actually comparing these assays is limited. The development of a novel duplex real-time PCR assay for detection of M. pneumoniae in the presence of an internal control real-time PCR is described. In addition, real-time nucleic acid sequence-based amplification (NASBA) on an iCycler apparatus is evaluated. These assays were compared to serology and a conventional PCR assay for 106 clinical samples from patients with lower-respiratory-tract infection. Of the 106 samples, 12 (11.3%) were positive by all the molecular methods whereas serology with acute sample and convalescent samples detected 6 (5.6%) and 9 (8.5%), respectively. Clinical symptoms of the patients with Mycoplasma -positive results were compared to those of the other patients with lower-respiratory-tract infections, and it was found that the results for mean lower age numbers as well as the presence of chills, increased erythrocyte sedimentation rate, and raised C-reactive protein levels showed significant differences. Molecular methods are superior for diagnosis of M. pneumoniae , providing more timely diagnosis. In addition, using real-time methods involves less hands-on time and affords the ability to monitor the reaction in the same tube.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3