Stimulation of Human Dendritic Cells by Wild-Type and M Protein Mutant Vesicular Stomatitis Viruses Engineered To Express Bacterial Flagellin

Author:

Ahmed Maryam1,Puckett Shelby1,Arimilli Subhashini2,Braxton Cassandra L.1,Mizel Steven B.2,Lyles Douglas S.1

Affiliation:

1. Departments of Biochemistry

2. Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157

Abstract

ABSTRACT Vesicular stomatitis viruses (VSVs) containing wild-type (wt) or mutant matrix (M) proteins are being developed as candidate vaccine vectors due to their ability to induce innate and adaptive immunity. Viruses with wt M protein, such as recombinant wild-type (rwt) virus, stimulate maturation of dendritic cells (DC) through Toll-like receptor 7 (TLR7) and its adaptor molecule MyD88. However, M protein mutant viruses, such as rM51R-M virus, stimulate both TLR7-positive and TLR7-negative DC subsets. The goal of this study was to determine whether the ability of rwt and rM51R-M viruses to induce maturation of human DC can be enhanced by engineering these vectors to express bacterial flagellin. Flagellin expressed from the rwt virus genome partially protected human DC from VSV-induced shutoff of host protein synthesis and promoted the production of interleukin 6 (IL-6) and IL-1β. In addition, DC infected with rwt virus expressing flagellin were more effective at stimulating gamma interferon (IFN-γ) production from CD8 + allogeneic T cells than DC infected with rwt virus. Although rM51R-M virus effectively stimulated human DC, flagellin expressed from the rM51R-M virus genome enhanced the production of cytokines. Furthermore, mice immunized with both rwt and rM51R-M viruses expressing flagellin had enhanced anti-VSV antibody responses in vivo . Therefore, rwt and rM51R-M viruses expressing flagellin may be promising vectors for the delivery of foreign antigen due to their potential to stimulate DC function.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3