A Human Immunodeficiency Virus Type 1 Isolate from an Infected Person Homozygous for CCR5Δ32 Exhibits Dual Tropism by Infecting Macrophages and MT2 Cells via CXCR4

Author:

Naif Hassan M.1,Cunningham Anthony L.1,Alali Mohammed1,Li Shan1,Nasr Najla1,Buhler Marc M.2,Schols Dominique3,de Clercq Erik3,Stewart Graeme2

Affiliation:

1. Centre for Virus Research

2. Institute of Immunology and Allergy Research, The Westmead Millennium Institute, The University of Sydney, Sydney, New South Wales, Australia

3. Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium

Abstract

ABSTRACT The mechanisms of human immunodeficiency virus (HIV) infection of a man (VH) homozygous for the CCR5Δ32 mutation were investigated, and coreceptors other than CCR5 used by HIV type 1 (HIV-1) isolated from this individual were identified. In contrast to previous reports, this individual's rate of disease progression was not accelerated. Homozygosity for CCR5Δ32 mutation was demonstrated by PCR and DNA sequencing (R. Biti et al., Nat. Med. 3:252-253, 1997). CCR5 surface expression was absent on T lymphocytes and macrophages. HIV was isolated by coculture with peripheral blood mononuclear cells (PBMCs) from siblings who were homozygous (VM) or wild type (WT) for the CCR5Δ32 mutation. The virus demonstrated dual tropism for infection of MT2 cell line and primary macrophages. Sequencing of the full HIV genome directly from the patient's PBMCs revealed 21 nucleotide insertions in the V1 region of gp120. The VH envelope sequence segregated apart from both the T-cell-line-adapted tropic strains NL4-3 and SF2 and M-tropic strain JRFL or YU2 by phylogenetic tree analysis. VH was shown to utilize predominantly CXCR4 for entry into T lymphocytes and macrophages by HOS.CD4 cell infection assay, direct envelope protein fusion, and inhibition by anti-CXCR4 monoclonal antibody (12G5), SDF-1, and AMD3100. Microsatellite mapping demonstrated the separate inheritance of CXCR4 by both homozygote brothers (VH and VM). Our study demonstrates the ability of certain strains of HIV to readily use CXCR4 for infection or entry into macrophages, which is highly relevant to the pathogenesis of late-stage disease and presumably also HIV transmission.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3