Cryptococcus neoformans Enters the Endolysosomal Pathway of Dendritic Cells and Is Killed by Lysosomal Components

Author:

Wozniak Karen L.1,Levitz Stuart M.1

Affiliation:

1. Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts

Abstract

ABSTRACT Cryptococcus neoformans is an opportunistic fungal pathogen that primarily causes disease in immunocompromised individuals. Dendritic cells (DCs) can phagocytose C. neoformans , present cryptococcal antigen, and kill C. neoformans . However, early events following C. neoformans phagocytosis by DCs are not well defined. We hypothesized that C. neoformans traffics to the endosome and the lysosome following phagocytosis by DCs and is eventually killed in the lysosome. Murine bone marrow-derived DCs (BMDCs) or human monocyte-derived DCs (HDCs) were incubated with live, encapsulated C. neoformans yeast cells and opsonizing antibody. Following incubation, DCs were intracellularly stained with antibodies against EEA1 (endosome) and LAMP-1 (late endosome/lysosome). As assessed by confocal microscopy, C. neoformans trafficked to endosomal compartments of DCs within 10 min and to lysosomal compartments within 30 min postincubation. For HDCs, the studies were repeated using complement-sufficient autologous plasma for the opsonization of C. neoformans . These data showed results similar to those for antibody opsonization, with C. neoformans localized to endosomes within 20 min and to lysosomes within 60 min postincubation. Additionally, the results of live real-time imaging studies demonstrated that C. neoformans entered lysosomal compartments within 20 min following the initiation of phagocytosis. The results of scanning and transmission electron microscopy demonstrated conventional zipper phagocytosis of C. neoformans by DCs. Finally, lysosomal extracts were purified from BMDCs and incubated with C. neoformans to determine their potential to kill C. neoformans . The extracts killed C. neoformans in a dose-dependent manner. This study shows that C. neoformans enters into endosomal and lysosomal pathways following DC phagocytosis and can be killed by lysosomal components.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3