Signaling through ShcA Is Required for Transforming Growth Factor β- and Neu/ErbB-2-Induced Breast Cancer Cell Motility and Invasion

Author:

Northey Jason J.1,Chmielecki Juliann2,Ngan Elaine1,Russo Caterina2,Annis Matthew G.2,Muller William J.12,Siegel Peter M.123

Affiliation:

1. Departments of Biochemistry

2. Medicine

3. Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada

Abstract

ABSTRACT Cooperation between the Neu/ErbB-2 and transforming growth factor β (TGF-β) signaling pathways enhances the invasive and metastatic capabilities of breast cancer cells; however, the underlying mechanisms mediating this synergy have yet to be fully explained. We demonstrate that TGF-β induces the migration and invasion of mammary tumor explants expressing an activated Neu/ErbB-2 receptor, which requires signaling from autophosphorylation sites located in the C terminus. A systematic analysis of mammary tumor explants expressing Neu/ErbB-2 add-back receptors that couple to distinct signaling molecules has mapped the synergistic effect of TGF-β-induced motility and invasion to signals emanating from tyrosine residues 1226/1227 and 1253 of Neu/ErbB-2. Given that the ShcA adaptor protein is known to interact with Neu/ErbB-2 through these residues, we investigated the importance of this signaling molecule in TGF-β-induced cell motility and invasion. The reduction of ShcA expression rendered cells expressing activated Neu/ErbB-2, or add-back receptors signaling specifically through tyrosines 1226/1227 or 1253, unresponsive to TGF-β-induced motility and invasion. In addition, a dominant-negative form of ShcA, lacking its three known tyrosine phosphorylation sites, completely abrogates the TGF-β-induced migration and invasion of breast cancer cells expressing activated Neu/ErbB-2. Our results implicate signaling through the ShcA adaptor as a key component in the synergistic interaction between these pathways.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3