Association of degradation and secretion of three chimeric polypeptides in Escherichia coli

Author:

Gentz R1,Kuys Y1,Zwieb C1,Taatjes D1,Taatjes H1,Bannwarth W1,Stueber D1,Ibrahimi I1

Affiliation:

1. F. Hoffmann La Roche & Co. A.G., Basel, Switzerland.

Abstract

We investigated the stability of fusion proteins composed of the signal peptide of the heat-labile enterotoxin of Escherichia coli and three polypeptides: the bacterial cytoplasmic chloramphenicol acetyltransferase, the mouse dihydrofolate reductase, and human immune interferon. We demonstrate that these proteins are rapidly degraded as a result of being targeted to the secretion apparatus of E. coli, with the extent of degradation varying among the three fusion proteins. Four lines of experimental evidence are presented in support of this suggestion. First, the chimeric polypeptides containing a functional signal peptide were detected in low amounts in vivo. When a mutation was introduced in the signal peptide, resulting in lack of recognition by the secretion apparatus, the chimeric proteins accumulated at high levels in the cytoplasm of the cell. Second, both the wild-type and mutant polypeptides accumulated in a purified and reconstituted in vitro translation system from E. coli and were equally susceptible to digestion by an exogenous protease. Third, the chimeric polypeptides lacking the signal peptide accumulated in a stable form in vivo. Fourth, the precursors of the proteins containing a functional signal peptide accumulated in a secA ts mutant at the restrictive temperature when secretion was blocked, suggesting that degradation is tightly linked to the secretion apparatus.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3