Incorporation of LL-diaminopimelic acid into peptidoglycan of Escherichia coli mutants lacking diaminopimelate epimerase encoded by dapF

Author:

Mengin-Lecreulx D1,Michaud C1,Richaud C1,Blanot D1,van Heijenoort J1

Affiliation:

1. Unité Associée du Centre National de la Recherche Scientifique, Orsay, France.

Abstract

Recently a dapF mutant of Escherichia coli lacking the diaminopimelate epimerase was found to have an unusual large LL-diaminopimelic acid (LL-DAP) pool as compared with that of meso-DAP (C. Richaud, W. Higgins, D. Mengin-Lecreulx, and P. Stragier, J. Bacteriol. 169:1454-1459, 1987). In this report, the consequences of high cellular LL-DAP/meso-DAP ratios on the structure and metabolism of peptidoglycan were investigated. For this purpose new efficient high-pressure liquid chromatography techniques for the separation of the DAP isomers were developed. Sacculi from dapF mutants contained a high proportion of LL-DAP that varied greatly with growth conditions. The same was observed with the two DAP-containing precursors, UDP-N-acetylmuramyl-tripeptide and UDP-N-acetylmuramyl-pentapeptide. The limiting steps for the incorporation of LL-DAP into peptidoglycan were found to be its addition to UDP-N-acetylmuramyl-L-alanyl-D-glutamate and the formation of the D-alanyl-DAP cross-bridges. The Km value of the DAP-adding enzyme for LL-DAP was 3.6 x 10(-2) M as compared with 1.1 x 10(-5) M for meso-DAP. When isolated sacculi were treated with Chalaropsis N-acetylmuramidase and the resulting soluble products were analyzed by high-pressure liquid chromatography, the proportion of the main peptidoglycan dimer was lower in the dapF mutant than in the parental strain. Moreover, the proportion of LL-DAP was higher in the main monomer than in the main dimer, where it was almost exclusively located in the donor unit. There are thus very few D-alanyl-LL-DAP cross-bridges, if any. We also observed that large amounts of LL-DAP and N-succinyl-LL-DAP were excreted in the growth medium by the dapF mutant.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3