surA, an Escherichia coli gene essential for survival in stationary phase

Author:

Tormo A1,Almirón M1,Kolter R1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115.

Abstract

Mutations in genes not required for exponential growth but essential for survival in stationary phase were isolated in an effort to understand the ability of wild-type Escherichia coli cells to remain viable during prolonged periods of nutritional deprivation. The phenotype of these mutations is referred to as Sur- (survival) and the genes are designated sur. The detailed analysis of one of these mutations is presented here. The mutation (surA1) caused by insertion of a mini-Tn10 element defined a new gene located near 1 min on the E. coli chromosome. It was located directly upstream of pdxA and formed part of a complex operon. Evidence is presented supporting the interpretation that cells harboring the surA1 mutation die during stationary phase while similar insertion mutations in other genes of the operon do not lead to a Sur- phenotype. Strains harboring surA1 had a normal doubling time in both rich and minimal medium, but cultures lost viability after several days in stationary phase. Analysis of revertants and suppressors of surA1, which arose after prolonged incubation in stationary phase, indicates that DNA rearrangements (excisions and duplications) occurred in cultures of this strain even when the viable-cell counts were below 10(2) cells per ml. Cells containing suppressing mutations then grew in the same culture to 10(8) cells per ml, taking over the population. The implications of these observations to our understanding of stationary-phase mutagenesis are discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3