soxR, a locus governing a superoxide response regulon in Escherichia coli K-12

Author:

Tsaneva I R1,Weiss B1

Affiliation:

1. Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0602.

Abstract

The nfo (endonuclease IV) gene of Escherichia coli is induced by superoxide generators such as paraquat (methyl viologen). An nfo'-lacZ operon fusion was used to isolate extragenic mutations affecting its expression. The mutations also affected the expression of glucose 6-phosphate dehydrogenase, Mn2(+)-superoxide dismutase (sodA), and three lacZ fusions to soi (superoxide-inducible) genes of unknown function. The mutations were located 2 kilobases clockwise of ssb at 92 min on the current linkage map. One set of mutations, in a new gene designated soxR, caused constitutive overexpression of nfo and the other genes. It included insertions or deletions affecting the carboxyl end of a 17-kilodalton polypeptide. In a soxR mutant, the expression of sodA, unlike that of nfo, was also regulated independently by oxygen tension. Two other mutants were isolated in which the target genes were noninducible; they had an increased sensitivity to killing by superoxide-generating compounds. One had a Tn10 insertion in or near soxR; the other had a multigene deletion encompassing soxR. Therefore, the region functions as a positive regulator because it encodes one or more products needed for the induction of nfo. Regulation is likely to be at the level of transcription because the mutations were able to affect the expression of an nfo'-lac operon fusion that contained the ribosome-binding site for lacZ. Some mutant plasmids that failed to suppress (or complement) constitutivity in trans had insertion mutations several hundred nucleotides upstream of soxR in the general region of a gene for a 13-kilodalton protein encoded by the opposite strand, raising the possibility of a second regulatory gene in this region. The result define a new regulon, controlled by soxR, mediating at least part of the global response to superoxide in E. coli.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 320 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3