Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function

Author:

Johnson P A1,Wang M J1,Friedmann T1

Affiliation:

1. Department of Pediatrics, University of California, San Diego, La Jolla 92093-0634.

Abstract

Derivatives of herpes simplex virus type 1 (HSV-1) have elicited considerable interest as gene transfer vectors because of their ability to infect a wide range of cell types efficiently, including fully differentiated neurons. However, it has been found that infection of many types of cell with vectors derived from replication-defective mutants of HSV-1 is associated with cytopathic effects (CPE). We have previously shown that viral gene expression played an important role in the induction of CPE caused by an HSV-1 mutant deleted for the essential immediate-early gene 3 (IE 3) (P.A. Johnson, A. Miyanohara, F. Levine, T. Cahill, and T. Friedmann, J. Virol. 66:2952-2965, 1992). We have investigated which viral genes might be responsible for CPE by comparing the ability of each of the individual genes expressed by an IE 3 deletion mutant during a nonproductive infection to inhibit biochemical transformation after cotransfection of BHK or CV-1 cells with a selectable marker gene. Transfection of IE genes 1,2, and 4 individually all caused a marked inhibition of colony formation, while transfection of IE 5 and the large subunit of ribonucleotide reductase had little effect. These results suggested that it would be necessary to mutate or reduce the expression of nearly all HSV-1 IE genes to reduce virus-induced CPE. Therefore, we have used VP16 mutants, which are unable to transinduce IE gene expression (C. I. Ace, T. A. McKee, J. M. Ryan, J. M. Cameron, and C. M. Preston, J. Virol. 63:2260-2269, 1989), to derive two replication-defective strains: 14H delta 3, which is deleted for both copies of IE 3, and in 1850 delta 42, which has a deletion in the essential early gene UL42. The IE 3-VP16 double mutant, 14H delta 3, is significantly less toxic than a single IE 3 deletion mutant over a range of multiplicities of infection, as measured in a cell-killing assay, and has an enhanced ability to persist in infected cells in a biologically retrievable form. In contrast, the UL42-VP16 double mutant, in 1850 delta 42, showed reduced toxicity only at low multiplicities of infection. To test the role of the virion host shutoff function as an additional candidate to influence virus-induced CPE, we have introduced a large insertion mutation into the virion host shutoff gene of an IE 3 deletion mutant and the double mutant 14H delta 3.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3