Transcription of the human T-cell lymphotropic virus type I promoter by an alpha-amanitin-resistant polymerase

Author:

Piras G1,Kashanchi F1,Radonovich M F1,Duvall J F1,Brady J N1

Affiliation:

1. Laboratory of Molecular Virology, National Cancer Institute, Bethesda, Maryland 20892.

Abstract

The human T-lymphotropic virus type I (HTLV-I) promoter contains the structural features of a typical RNA polymerase II (pol II) template. The promoter contains a TATA box 30 bp upstream of the transcription initiation site and binding sites for several pol II transcription factors, and long poly(A)+ RNA is synthesized from the integrated HTLV-I proviral DNA in vivo. Consistent with these characteristics, HTLV-I transcription activity was reconstituted in vitro by using TATA-binding protein, TFIIA, recombinant TFIIB, TFIIE, and TFIIF, TFIIH, and pol II. Transcription of the HTLV-I promoter in the reconstituted system requires RNA pol II. In HeLa whole cell extracts, however, the HTLV-I long terminal repeat also contains an overlapping transcription unit (OTU). HTLV-I OTU transcription is initiated at the same nucleotide site as the RNA isolated from the HTLV-I-infected cell line MT-2 but was not inhibited by the presence of alpha-amanitin at concentrations which inhibited the adenovirus major late pol II promoter (6 micrograms/ml). HTLV-I transcription was inhibited when higher concentrations of alpha-amanitin (60 micrograms/ml) were used, in the range of a typical pol III promoter (VA-I). Neutralization and depletion experiments with three distinct pol II antibodies demonstrate that RNA pol II is not required for HTLV-I OTU transcription. Antibodies to basal transcription factors TATA-binding protein and TFIIB, but not TFIIIC, inhibited HTLV-I OTU transcription. These observations suggest that the HTLV-I long terminal repeat contains overlapping promoters, a typical pol II promoter and a unique pol III promoter which requires a distinct set of transcription factors.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3