Pharmacodynamics of the New Fluoroquinolone Gatifloxacin in Murine Thigh and Lung Infection Models

Author:

Andes D.1,Craig W. A.12

Affiliation:

1. Department of Medicine, Section of Infectious Diseases, University of Wisconsin School of Medicine

2. Department of Medicine, William S. Middleton Memorial Veterans Affairs Hospital, Madison, Wisconsin

Abstract

ABSTRACT Gatifloxacin is a new 8-methoxy fluoroquinolone with enhanced activity against gram-positive cocci. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of gatifloxacin and determine which pharmacokinetic (PK)-pharmacodynamic (PD) parameter best correlated with efficacy. The thighs of mice were infected with 10 6.5 to 10 7.4 CFU of strains of Staphylococcus aureus , Streptococcus pneumoniae , or Escherichia coli , and the mice were then treated for 24 h with 0.29 to 600 mg of gatifloxacin per kg of body weight per day, with the dose fractionated for dosing every 3, 6, 12, and 24 h. Levels in serum were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were calculated from serial values of the log 10 numbers of CFU per thigh 2 to 4 h after the administration of doses of 8 and 32 mg/kg. Nonlinear regression analysis was used to determine which PK-PD parameter best correlated with the numbers of CFU per thigh at 24 h. Pharmacokinetic studies revealed peak/dose values of 0.23 to 0.32, area under the concentration-time curve (AUC)/dose values of 0.47 to 0.62, and half-lives of 0.6 to 1.1 h. Gatifloxacin produced in vivo PAEs of 0.2 to 3.1 h for S. pneumoniae and 0.4 to 2.3 h for S. aureus . The 24-h AUC/MIC was the PK-PD parameter that best correlated with efficacy ( R 2 = 90 to 94% for the three organisms, whereas R 2 = 70 to 81% for peak level/MIC and R 2 = 48 to 73% for the time that the concentration in serum was greater than the MIC). There was some reduced activity when dosing every 24 h was used due to the short half-life of gatifloxacin in mice. In subsequent studies we used the neutropenic and nonneutropenic murine thigh and lung infection models to determine if the magnitude of the AUC/MIC needed for the efficacy of gatifloxacin varied among pathogens (including resistant strains) and infection sites. The mice were infected with 10 6.5 to 10 7.4 CFU of four isolates of S. aureus (one methicillin resistant) per thigh, nine isolates of S. pneumoniae (two penicillin intermediate, four penicillin resistant, and two ciprofloxacin resistant) per thigh, four isolates of the family Enterobacteriaceae per thigh, a single isolate of Pseudomonas aeruginosa per thigh, and 10 8.3 CFU of Klebsiella pneumoniae per lung. The mice were then treated for 24 h with 0.29 to 600 mg of gatifloxacin per kg every 6 or 12 h. A sigmoid dose-response model was used to estimate the dose (in milligrams per kilogram per 24 h) required to achieve a net bacteriostatic effect over 24 h. MICs ranged from 0.015 to 8 μg/ml. The 24-h AUC/MICs for each static dose (1.7 to 592) varied from 16 to 72. Mean ± standard deviation 24-h AUC/MICs for isolates of the family Enterobacteriaceae , S. pneumoniae , and S. aureus were 41 ± 21, 52 ± 20, and 36 ± 9, respectively. Methicillin, penicillin, or ciprofloxacin resistance did not alter the magnitude of the AUC/MIC required for efficacy. The 24-h AUC/MICs required to achieve bacteriostatic effects against K. pneumoniae were quite similar in the thigh and lung (70 versus 56 in neutropenic mice and 32 versus 43 in nonneutropenic mice, respectively). The magnitude of the 24-h AUC/MIC of gatifloxacin required for efficacy against multiple pathogens varied only fourfold and was not significantly altered by drug resistance or site of infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3