Induction of nitric oxide synthesis and xanthine oxidase and their roles in the antimicrobial mechanism against Salmonella typhimurium infection in mice

Author:

Umezawa K1,Akaike T1,Fujii S1,Suga M1,Setoguchi K1,Ozawa A1,Maeda H1

Affiliation:

1. Department of Microbiology, Kumamoto University School of Medicine, Honjo, Japan.

Abstract

The role of superoxide anion (O2-) and nitric oxide (NO) in the host defense mechanism against Salmonella typhimurium (LT-2) was examined by focusing on xanthine oxidase (XO) as an O2(-)-generating system and on inducible NO synthase (iNOS). When ICR mice were infected with a 0.1 50% lethal dose (2 x 10(5) CFU) of S. typhimurium, bacterial growth in the liver reached a peak value 3 days after infection (10(4.32) CFU/g of liver) and decreased thereafter. XO activity in the liver became maximum at 7 days after infection; the value was 34.6 +/- 1.4 mU/g of liver at 7 days (compared with 11.0 +/- 1.3 mU/g of liver before infection). The time profile of NO production in the liver as determined by electron spin resonance spectroscopy was consistent with that of XO activity. Histological examination of infected liver showed the formation of multiple microabscesses with granulomatous lesions consisting of polymorphonuclear cells and mononuclear cells, and iNOS-expressing cells were localized in the confined areas of the microabscesses. When XO inhibitors such as allopurinol and 4-amino-6-hydroxypyrazolo[3,4-d]pyrimidine (AHPP) were administered to the infected mice, the mortality of the mice was significantly increased (10 of 21 and 11 of 20 for the allopurinol- and AHPP-treated groups, respectively, versus 2 of 20 for control mice), and bacterial growth was significantly enhanced. A similar exacerbation of the infection was obtained with N(omega)-monomethyl-L-arginine (L-NMMA) treatment of the mice. Of considerable importance is that granuloma formation in the liver was poorly developed by treatment with either XO inhibitors or L-NMMA. These results suggest that XO and NO play an important role in the antimicrobial mechanism against S. typhimurium in mice.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3