Affiliation:
1. Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Microbiology, University of Toronto, Ontario, Canada.
Abstract
Structurally conserved verotoxin 1 (VT1) mutant derivatives, showing reduced receptor binding and cytotoxicity, may serve as natural toxoids to protect against VT-mediated disease. In this study, the antibody responses to the wild-type VT1 B subunit, a B-subunit mutant (Phe30Ala B), and the corresponding holotoxin (Phe30Ala HT) were examined in three inbred mouse strains. BALB/c (H-2d) and CBA (H-2k) mice produced strong antibody responses to both wild-type and mutant B subunits. VT1 B-raised sera reacted more strongly with VT1 B than with Phe30Ala B in enzyme-linked immunosorbent assays, while Phe30Ala B-raised sera reacted equally with VT1 B and Phe30Ala B. C57BL/6 (H-2b) and congenic BALB/c (BALB x B [H-2b]) mice produced no detectable antibody response to either VT1 B or Phe30Ala B. However, an anti-VT1 B antibody response was detected in H-2b mice immunized with biologically active Phe30Ala HT. Based on these observations, we conclude that the VT1 B subunit possesses a B-cell immunodominant epitope formed partly by phenylalanine 30 and that the B-subunit antibody response is dependent on the H-2 haplotype of the mouse strain. Our results also support a potential role for the A subunit in providing the T-cell help necessary to overcome a deficient B-subunit antibody response in H-2b mice.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献