Rickettsia rickettsii infection of cultured human endothelial cells induces NF-kappaB activation

Author:

Sporn L A1,Sahni S K1,Lerner N B1,Marder V J1,Silverman D J1,Turpin L C1,Schwab A L1

Affiliation:

1. Department of Medicine, University of Rochester School of Medicine & Dentistry, New York 14642, USA.

Abstract

Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever, is an obligate intracellular bacterial organism that infects primarily the vascular endothelial cells (EC). A component of the EC response to infection is transcriptional activation, which may contribute to the thrombotic and inflammatory consequences of disease. In this study, we explore R. rickettsii-induced activation of the nuclear factor-kappaB/Rel (NF-kappaB) family of transcription factors involved in early transcriptional responses to injurious stimuli. Two NF-kappaB species were activated by infection and reacted with a double-stranded oligonucleotide probe corresponding to the kappaB binding domain of the murine kappa light-chain gene enhancer. Gel supershift analysis demonstrated the reactivity of these complexes with antibodies against p65 and p50, and the induced species were tentatively identified as p50-p50 homodimers and p50-p65 heterodimers. Semiquantitative reverse transcription-PCR analysis revealed dramatic increases in the steady-state levels of mRNA coding for the inhibitory subunit of NF-kappaB (IkappaB alpha), transcription of which is enhanced by the binding of NF-kappaB within the IkappaB alpha promoter region. NF-kappaB activation was first detected 1.5 h following infection and was biphasic, with an early peak of activation at approximately 3 h, a return to baseline levels at 14 h, and even higher levels of activation at 24 h. It is likely that NF-kappaB activation requires cellular uptake of R. rickettsii, since treatment of EC with cytochalasin B during infection to block entry inhibited activation by only 70% at 3 h. R. rickettsii-induced activation of NF-kappaB may be an important controlling factor in the transcriptional responses of EC to infection with this obligate intracellular organism.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference38 articles.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3