V3 loop of the human immunodeficiency virus type 1 Env protein: interpreting sequence variability

Author:

Milich L1,Margolin B1,Swanstrom R1

Affiliation:

1. Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7295.

Abstract

Two different states of human immunodeficiency virus type 1 are apparent in the asymptomatic and late stages of infection. Important determinants associated with these two states have been found within the V3 loop of the viral Env protein. In this study, two large data sets of published V3 sequences were analyzed to identify patterns of sequence variability that would correspond to these two states of the virus. We were especially interested in the pattern of basic amino acid substitutions, since the presence of basic amino acids in V3 has been shown to change virus tropism in cell culture. Four features of the sequence heterogeneity in V3 were observed: (i) approximately 70% of all nonconservative basic substitutions occur at four positions in V3, and V3 sequences with a basic substitution in at least one of these four positions contain approximately 95% of all nonconservative basic substitutions; (ii) substitution patterns within V3 are influenced by the identity of the amino acid at position 25; (iii) sequence polymorphisms account for a significant fraction of uncharged amino acid substitutions at several positions in V3, and sequence heterogeneity other than these polymorphisms is most significant at two positions near the tip of V3; and (iv) sequence heterogeneity in V3 (in addition to the basic amino acid substitutions) is approximately twofold greater in V3 sequences that contain basic amino acid substitutions. By using this sequence analysis, we were able to identify distinct groups of V3 sequences in infected patients that appear to correspond to these two virus states. The identification of these discrete sequence patterns in vivo demonstrates how the V3 sequence can be used as a genetic marker for studying the two states of human immunodeficiency virus type 1.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3