Hydroxyl radical footprints and half-site arrangements of binding sites for the CysB transcriptional activator of Salmonella typhimurium

Author:

Hryniewicz M M1,Kredich N M1

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.

Abstract

CysB is a transcriptional activator for the cysteine regulon and negatively autoregulates its own gene, cysB. Transcription activation also requires an inducer, N-acetyl-L-serine. CysB is known to bind to activation sites just upstream of the -35 regions of the positively regulated cysJIH, cysK, and cysP promoters and to a repressor site centered at about +1 in the cysB promoter. Additional accessory sites have been found in positively regulated promoters. The hydroxyl radical footprinting experiments reported here indicate that the activation sites CBS-J1, CBS-K1, and CBS-P1 in the cysJIH, cysK, and cysP promoters are composed of two convergently oriented 19-bp half-sites separated by 1 or 2 bp. N-Acetyl-L-serine stimulates binding to these sites as well as to the accessory sites CBS-J2 and CBS-P2, both of which share a similar topology with activation sites. A second topology is found in the accessory site CBS-K2 and the repressor site CBS-B, which contain divergently oriented 19-bp half-sites separated by one or two helical turns. N-Acetyl-L-serine inhibits binding to these two sites. A third topology is present in the cysK and cysP promoters, where an additional half-site is oriented toward the activation site and separated from it by one helical turn. Here, CysB binds to all three half-sites, bending the DNA, and N-acetyl-L-serine decreases the extent of bending. The marked dissimilarities of these half-site arrangements and of their responses to N-acetyl-L-serine suggest that CysB, a homotetramer, binds to them with different combinations of subunits.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3