The NarX and NarQ sensor-transmitter proteins of Escherichia coli each require two conserved histidines for nitrate-dependent signal transduction to NarL

Author:

Cavicchioli R1,Schröder I1,Constanti M1,Gunsalus R P1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.

Abstract

The NarX, NarQ, and NarL proteins of Escherichia coli constitute a two-component regulatory system that controls the expression of a number of anaerobic respiratory pathway genes in response to nitrate. NarX and NarQ are sensor-transmitter proteins that can independently detect the presence of nitrate in the cell environment and transmit this signal to the response regulator, NarL. Upon activation, NarL binds DNA and modulates the expression of its target genes by the repression or activation of transcription. NarX and NarQ each contain a conserved histidine residue that corresponds to the site of autophosphorylation of other sensor-transmitter proteins. They also contain a second conserved histidine residue that is present in the NarX, NarQ, UhpB, DegS, and ComP subfamily of sensor-transmitter proteins. The second histidine is located near a universally conserved asparagine residue, the role of which in signal transduction is unknown. To investigate the role of these conserved amino acids in the NarX and NarQ proteins, we mutated the narX and narQ genes by site-directed mutagenesis. In vivo, each mutation severely impaired NarL-dependent activation or repression of reporter gene expression in response to nitrate. The in vivo data suggest that the environmental signal nitrate controls both the kinase and phosphatase activities of the two sensor-transmitter proteins. The altered NarX and NarQ proteins were purified and shown to be defective in their ability to autophosphorylate in the presence of [gamma-32P]ATP. The NarX and NarQ proteins with amino acid substitutions at the first conserved histidine position were also unable to dephosphorylate NarL-phosphate in vitro. In contrast, the proteins containing amino acid substitutions at the second conserved histidine or at the conserved asparagine residue retained NarL-phosphate dephosphorylation activity. The conserved histidine and asparagine residues are essential for NarX and NarQ function, and this suggests that other two-component sensor-transmitter proteins may function in a similar fashion.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3