Murine natural killer cell interactions with a fungal target, Cryptococcus neoformans

Author:

Hidore M R1,Murphy J W1

Affiliation:

1. Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73190.

Abstract

Earlier investigations have shown that murine natural killer (NK) cells bind to and inhibit the growth of the fungal pathogen Cryptococcus neoformans in vitro and in vivo. To define the stages of NK cell-mediated inhibition of C. neoformans growth and the requirements for the completion of these stages, the events which lead to cryptococcal growth inhibition were compared with those previously elucidated for NK cell-mediated tumor cell lysis. Our data indicate that NK cell-cryptococci binding is a distinct event that precedes inhibition; is temperature independent, although it is slowed at 4 degrees C; and is Mg2+ dependent. In contrast to binding, NK cell-mediated cryptococcal growth inhibition is temperature, Mg2+, and Ca2+ dependent. The removal of Ca2+ by EDTA addition within 3 h after maximal NK cell-cryptococci binding significantly reduced cryptococcal growth inhibition, indicating that Ca2+ is required either late in the NK cell trigger stage or early in the inhibitory stage. These stages and requirements are similar to those previously demonstrated for the model of NK cell-mediated tumor cell lysis; however, the NK cell-cryptococci interactions are somewhat slower than the interactions which culminate in the lysis of the YAC-1 tumor cell targets. These results suggest that C. neoformans cells, although structurally distinct from the standard tumor cell targets, are capable of similar cell-to-cell interactions with NK effector cells as the tumor cell targets.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3