The Cyclic AMP Receptor Protein, CRP, Is Required for Both Virulence and Expression of the Minimal CRP Regulon in Yersinia pestis Biovar microtus

Author:

Zhan Lingjun12,Han Yanping2,Yang Lei12,Geng Jing2,Li Yingli2,Gao He2,Guo Zhaobiao2,Fan Wei3,Li Gang3,Zhang Lianfeng1,Qin Chuan1,Zhou Dongsheng2,Yang Ruifu2

Affiliation:

1. Institute of Laboratory Animal Sciences, Chinese Academy of Medicine Peking Union Medical College, Beijing 100021, China

2. State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China

3. Laboratory Animal Center, Academy of Military Medical Sciences, Beijing 100071, China

Abstract

ABSTRACT The cyclic AMP receptor protein (CRP) is a bacterial regulator that controls more than 100 promoters, including those involved in catabolite repression. In the present study, a null deletion of the crp gene was constructed for Yersinia pestis bv. microtus strain 201. Microarray expression analysis disclosed that at least 6% of Y. pestis genes were affected by this mutation. Further reverse transcription-PCR and electrophoretic mobility shift assay analyses disclosed a set of 37 genes or putative operons to be the direct targets of CRP, and thus they constitute the minimal CRP regulon in Y. pestis . Subsequent primer extension and DNase I footprinting assays mapped transcriptional start sites, core promoter elements, and CRP binding sites within the DNA regions upstream of pla and pst , revealing positive and direct control of these two laterally acquired plasmid genes by CRP. The crp disruption affected both in vitro and in vivo growth of the mutant and led to a >15,000-fold loss of virulence after subcutaneous infection but a <40-fold increase in the 50% lethal dose by intravenous inoculation. Therefore, CRP is required for the virulence of Y. pestis and, particularly, is more important for infection by subcutaneous inoculation. It can further be concluded that the reduced in vivo growth phenotype of the crp mutant should contribute, at least partially, to its attenuation of virulence by both routes of infection. Consistent with a previous study of Y. pestis bv. medievalis, lacZ reporter fusion analysis indicated that the crp deletion resulted in the almost absolute loss of pla promoter activity. The plasminogen activator encoded by pla was previously shown to specifically promote Y. pestis dissemination from peripheral infection routes (subcutaneous infection [flea bite] or inhalation). The above evidence supports the notion that in addition to the reduced in vivo growth phenotype, the defect of pla expression in the crp mutant will greatly contribute to the huge loss of virulence of this mutant strain in subcutaneous infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3