Enzymatic adaptation by bacteria under pressure

Author:

Marquis R E,Keller D M

Abstract

A study of enzymic adaptation under hydrostatic pressure by moderately barotolerant bacteria that can grow at pressure up to about 500 atm revealed that some adaptive processes are relatively insensitive to pressure, whereas others are sufficiently barosensitive to compromise survival capacity in situations requiring adaptation to new substrates under pressure. Examples of the former include adaptation of Escherichia coli to arabinose catabolism for growth and adaptation of Streptococcus faecalis to catabolism of lactose, ribose, or maltose. Examples of the latter include derepression of the lac operon in Escherichia coli and induction of penicillinase synthesis by Bacillus licheniformis. For both these barosensitive systems, pressure had little effect on enzyme levels in constitutive strains or in bacteria that had previously been induced at 1 atm. Moreover, it had no detectable effect on penicillinase secretion. However, pressures of 300 to 400 atm were found to reduce markedly rates and extents of enzyme synthesis by bacteria undergoing derepression or adaptation. This inhibitory effect of pressure was reflected in greater barosensitivity with extended lag and slower growth of initially unadapted Escherichia coli cells inoculated into minimal medium with lactose as sole source of carbon and fuel, and by major reductions in the minimal inhibitory concentrations of penicillin G for unadapted B. licheniformis cells inoculated into complex, antibiotic-containing media. Cyclic adenosine 5'-monophosphate did not reverse pressure inhibition of derepression of the lac operon, and catabolite repression was complete under pressure. However, derepression of the lac operon was more sensitive to pressure at low concentrations of inducer than at high concentrations. Apparent volume changes for derepression were 94 and 60 ml/mol at inducer concentrations of about 0.5 and 5 mM, respectively. Pressure was found not to be inhibitory for uptake of beta-galactosides; in fact, it was somewhat stimulatory. Therefore, results were interpreted in terms of inducer binding and subsequent conversion of an operator-inducer-repressor complex to inactive repressor and operator. Both reactions appeared to result in an increase in volume, the former more so than the latter. We found also that 200 atm was actually stimulatory for growth of Escherichia coli in minimal media, and the bacterium was in a sense barophilic.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3