Affiliation:
1. Cell Biology Department, Upjohn Co., Kalamazoo, Michigan 49001.
Abstract
The isolation of mutant cell lines affecting the activity of cyclic AMP (cAMP)-dependent protein kinase (PK-A) has made it possible to determine the function of this kinase in mammalian cells. We found that both a CHO cell mutant with a defective regulatory subunit (RI) for PK-A and a transfectant cell line expressing the same mutant kinase were sensitive to multiple drugs, including puromycin, adriamycin, actinomycin D, and some antimitotic drugs. The mutant and transfectant cells, after treatment with a concentration of the antimitotic drug colcemid that had no marked effect on the wild-type parent cell, had a severely disrupted microtubule network. The phenotype of hypersensitivity to the antimitotic drug colcemid was used to select revertants of the transfectant and the original mutant. These revertants simultaneously regained normal multiple drug resistance and cAMP sensitivity, thus establishing that the characteristics of colcemid sensitivity and cAMP resistance are linked. Four revertants of the transfectant reverted because of loss or rearrangement of the transfected mutant RI gene. These revertants, as well as one revertant selected from the original mutant, had PK-A activities equal to or higher than that of the parent. In these genetic studies, in which linkage of expression of a PK-A mutation with drug sensitivity is demonstrated, it was established that the PK-A system is involved in regulating resistance of mammalian cells to multiple drugs.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology