Differential nuclear protein binding to 5-azacytosine-containing DNA as a potential mechanism for 5-aza-2'-deoxycytidine resistance.

Author:

Michalowsky L A,Jones P A

Abstract

A clonal cell line (56-42) that was stably and exclusively resistant to the toxic effects of the antileukemic agent 5-aza-2'-deoxycytidine (5-aza-CdR) was derived from C3H 10T1/2 C18 cells after multiple treatments with 5-aza-CdR. The 50% lethal dose of 5-aza-CdR for these cells was 1.3 microM, which was 15-fold greater than that for the parental cells. Cell line 56-42 was slightly cross-resistant to the ribo-analog 5-azacytidine, but was sensitive to the nucleoside analog 1-beta-D-arabinofuranosylcytosine and to colcemid. Both parental and resistant cell lines incorporated equimolar amounts of 5-aza-CdR into DNA. Resistance was therefore not due to decreased activation, increased detoxification, or reduced incorporation of the drug. The overall level of cytosine methylation in the resistant clone was 80% lower than the level in the sensitive cells. Therefore, the potential number of hemimethylated sites created by the incorporation of equivalent amounts of 5-aza-CdR into the DNA of the two cell types was much greater in the sensitive cells. Furthermore, 5-azacytosine-substituted DNA from the sensitive cells bound 100% more nuclear protein in the form of highly stable complexes. The incorporation of 5-aza-CdR opposite methylated cytosine residues in DNA of the sensitive cells thus resulted in increased nuclear protein binding at hemimethylated sites. This relative increase in tight-binding protein complexes was shown to occur in living cells and may well disrupt replication and transcription and instigate cell death. The differential binding of proteins to hypomethylated, azacytosine-containing DNA may thus mediate a novel mechanism of drug resistance.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3