Genetic and Physiological Aspects of Resistance to 5-Fluoropyrimidines in Saccharomyces cerevisiae

Author:

Jund Richard1,Lacroute François1

Affiliation:

1. Laboratoire de Génétique Physiologique, Institut de Botanique, 67-Strasbourg, France

Abstract

Mutants resistant to 5-fluorouracil, 5-fluorocytosine, and 5-fluorouridine were selected in yeast, and the mechanisms of their resistance were investigated. The investigated mutations map in seven different loci. (i) A mutation at the locus FUI 1 gives specifically resistance to 5-fluorouridine. (ii) Two loci are involved in a specific 5-fluorocytosine resistance: a mutation at locus FCY 1 produces a loss of cytosine deaminase activity; a mutation at locus FCY 2 results in the loss of the activity of a cytosine-specific permease. (iii) A mutation at the locus FUR 4 gives a simultaneous resistance to 5-fluorouracil and to 5-fluorouridine by loss in the activity of the uracil-specific permease. (iv) We found three types of mutants in the locus FUR 1. One is dominant and weakly resistant to 5-fluorouracil, 5-fluorocytosine, and 5-fluorouridine. The two others are recessive and are unable to catalyze one of the steps involved in uracil transformation into uridine 5′-monophosphate; this block-age explains their strong resistance to 5-fluorouracil and 5-fluorocytosine. Of these two mutants, one is resistant to 5-fluorouridine and the other is not. (v) Mutations at locus FUR 2 give resistance to 5-fluorouracil, 5-fluorocytosine, and 5-fluorouridine. These mutations are dominant and lead to a loss in the feedback regulation of the aspartic transcarbamylase activity by uridine triphosphate. (vi) The mutants FUR 3 are resistant to 5-fluorocytosine and 5-fluorouridine. They are dominant and physiologically related to the mutants of the locus FUR 1 but their mechanism of resistance is not understood.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference19 articles.

1. The control of nucleotide biosynthesis. Annu;Blackley R. L.;Rev. Biochem.,1968

2. Biochemistry of cancer. Annu;Brockman R. N.;Rev. Biochem.,1963

3. Partial purification of a non-phosphorylytic uridine nucleosidase from yeast;Carter C. E.;J. Amer. Chem. Soc.,1951

4. Conversion of uracil and orotate to uridine 5'-phosphate by enzymes in lactobacilli;Crawford J.;J. Biol. Chem.,1957

5. The utilization of exogenous pyrimidines and the recycling of uridine 5'phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism;Grenson M.;Eur. J. Biochem.,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3