Low Concentrations of Bile Salts Induce Stress Responses and Reduce Motility in Bacillus cereus ATCC 14570

Author:

Kristoffersen Simen M.12,Ravnum Solveig2,Tourasse Nicolas J.2,Økstad Ole Andreas2,Kolstø Anne-Brit2,Davies William1

Affiliation:

1. Department of Molecular Biosciences, University of Oslo, PB 1041 Blindern, 0316 Oslo, Norway

2. Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PB 1068 Blindern, 0316 Oslo, Norway

Abstract

ABSTRACT Tolerance to bile salts was investigated in forty Bacillus cereus strains, including 17 environmental isolates, 11 dairy isolates, 3 isolates from food poisoning outbreaks, and 9 other clinical isolates. Growth of all strains was observed at low bile salt concentrations, but no growth was observed on LB agar plates containing more than 0.005% bile salts. Preincubation of the B. cereus type strain, ATCC 14579, in low levels of bile salts did not increase tolerance levels. B. cereus ATCC 14579 was grown to mid-exponential growth phase and shifted to medium containing bile salts (0.005%). Global expression patterns were determined by hybridization of total cDNA to a 70-mer oligonucleotide microarray. A general stress response and a specific response to bile salts were observed. The general response was similar to that observed in cultures grown in the absence of bile salts but at a higher (twofold) cell density. Up-regulation of several putative multidrug exporters and transcriptional regulators and down-regulation of most motility genes were observed as part of the specific response. Motility experiments in soft agar showed that motility decreased following bile salts exposure, in accordance with the transcriptional data. Genes encoding putative virulence factors were either unaffected or down-regulated.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3