PCR Assay of the groEL Gene for Detection and Differentiation of Bacillus cereus Group Cells

Author:

Chang Yu-Hsiu1,Shangkuan Yung-Hui1,Lin Hung-Chi1,Liu Hwan-Wun1

Affiliation:

1. Division of Bacteriology, Institute of Preventive Medicine, National Defense Medical Center, Sanhsia, Taipei, Taiwan 237, Republic of China

Abstract

ABSTRACT Strains of species in the Bacillus cereus group are potentially enterotoxic. Thus, the detection of all B. cereus group strains is important. As 16S ribosomal DNA sequence analysis cannot adequately differentiate species of the B. cereus group, we explored the potential of the groEL gene as a phylogenetic marker. A phylogenetic analysis of the groEL sequences of 78 B. cereus group strains revealed that the B. cereus group strains were split into two major clusters, one including six B. mycoides and one B. pseudomycoides (cluster II) and the other including two B. mycoides and the rest of the B. cereus group strains (cluster I). Cluster I was further differentiated into two subclusters, Ia and Ib. The sodA gene sequences of representative strains from different clusters were also compared. The phylogenetic tree constructed from the sodA sequences showed substantial similarity to the tree constructed from the groEL sequences. Based on the groEL sequences, a PCR assay for detection and identification of B. cereus group strains was developed. Subsequent restriction fragment length polymorphism (RFLP) analysis verified the PCR amplicons and the differentiation of the B. cereus group strains. RFLP with Mbo I was identical for all the B. cereus group strains analyzed, while RFLP with Mfe I or Pst I classified all B. cereus and B. thuringiensis strains into two groups. All cluster II B. mycoides and B. pseudomycoides strains could be discriminated from other B. cereus group bacteria by restriction analysis with Tsp RI.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3