Distinct Responses in Ammonia-Oxidizing Archaea and Bacteria after Addition of Biosolids to an Agricultural Soil

Author:

Kelly John J.,Policht Katherine,Grancharova Tanya,Hundal Lakhwinder S.

Abstract

ABSTRACTThe recently discovered ammonia-oxidizing archaea (AOA) have been suggested as contributors to the first step of nitrification in terrestrial ecosystems, a role that was previously assigned exclusively to ammonia-oxidizing bacteria (AOB). The current study assessed the effects of agricultural management, specifically amendment of soil with biosolids or synthetic fertilizer, on nitrification rates and copy numbers of archaeal and bacterial ammonia monooxygenase (amoA) genes. Anaerobically digested biosolids or synthetic fertilizer was applied annually for three consecutive years to field plots used for corn production. Biosolids were applied at two loading rates, a typical agronomic rate (27 Mg hectare−1year−1) and double the agronomic rate (54 Mg hectare−1year−1), while synthetic fertilizer was applied at an agronomic rate typical for the region (291 kg N hectare−1year−1). Both biosolids amendments and synthetic fertilizer increased soil N and corn yield, but only the biosolids amendments resulted in significant increases in nitrification rates and increases in the copy numbers of archaeal and bacterialamoAgenes. In addition, only archaealamoAgene copy numbers increased in response to biosolids applied at the typical agronomic rate and showed a significant correlation with nitrification rates. Finally, copy numbers of archaealamoAgenes were significantly higher than copy numbers of bacterialamoAgenes for all treatments. These results implicate AOA as being primarily responsible for the increased nitrification observed in an agricultural soil amended with biosolids. These results also support the hypothesis that physiological differences between AOA and AOB may enable them to occupy distinct ecological niches.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3