Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors

Author:

Oh Y S1,Bartha R1

Affiliation:

1. Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231.

Abstract

From contaminated industrial sludge, two stable multistrain microbial enrichments (consortia) that were capable of rapidly utilizing chlorobenzene and o-dichlorobenzene, respectively, were obtained. These consortia were characterized as to their species composition, tolerance range, and activity maxima in order to establish and maintain the required operational parameters during their use in biofilters for the removal of chlorobenzene contaminants from air. The consortia were immobilized on a porous perlite support packed into filter columns. Metered airstreams containing the contaminant vapors were partially humidified and passed through these columns. The vapor concentrations prior to and after biofiltration were measured by gas chromatography. Liquid was circulated concurrently with the air, and the device was operated in the trickling air biofilter mode. The experimental arrangement allowed the independent variation of liquid flow, airflow, and solvent vapor concentrations. Bench-scale trickling air biofilters removed monochlorobenzene, o-dichlorobenzene, and their mixtures at rates of up to 300 g of solvent vapor h(-1) m(-3) filter volume. High liquid recirculation rates and automated pH control were critical for stable filtration performance. When the accumulating NaCl was periodically diluted, the trickling air biofilters continued to remove chlorobenzenes for several months with no loss of activity. The demonstrated high performance and stability of the described trickling air biofilters favor their use in industrial-scale air pollution control.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference22 articles.

1. Atlas R. M. 1993. Handbook of microbiological media p. 606-607. CRC Press Boca Raton Fla.

2. Air stripping VOCs from groundwater: process design considerations;Ball B. R.;Environ. Prog.,1992

3. Determination of trace amounts of chloride in naphtha;Bergmann J. G.;Anal. Chem.,1957

4. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford M. M.;Anal. Biochem.,1976

5. Microbial degradation of 1,3-dichlorobenzene;De Bont J. A. M.;Appl. Environ. Microbiol.,1986

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3