Molecular structure of the cell-attachment protein of reovirus: correlation of computer-processed electron micrographs with sequence-based predictions

Author:

Fraser R D1,Furlong D B1,Trus B L1,Nibert M L1,Fields B N1,Steven A C1

Affiliation:

1. Fogarty International Center, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892.

Abstract

The receptor-recognition interaction that initiates reovirus infection is mediated by the sigma 1 protein, located at the vertices of the icosahedral virion. We have applied computer-based image-averaging techniques to electron micrographs of negatively stained preparations of sigma 1 purified from virions (serotype 2 Jones). Combining these results with inferences based on the amino acid sequence has led to a molecular model in which the overall folding of the chains is described; its conformation embodies motifs, coiled-coil alpha-helices and nodular multichain elements rich in beta-sheets, previously detected in the corresponding proteins of other viruses, but with some novel variations. Sigma 1 is a filamentous lollipop-shaped molecule with an overall length of approximately 48 nm; it has a flexible "tail," approximately 40 nm long by 4 to 6 nm wide, terminating at its distal end in a globular "head," approximately 9.5 nm in diameter. The purified protein is a tetramer (4 by 50 kilodaltons) consisting of two similarly oriented dimers bonded side by side and in register. For each chain, a cluster of hydrophobic residues at its amino terminus resides at the proximal end of the tail; next, an alpha-helical domain (residues 25 to 172) participates in a two-chained coiled coil, 22 nm long, with two such coiled coils pairing laterally to form the proximal half of the tail. The remainder of the tail (residues 173 to approximately 316) is less uniform in width and is expected to be rich in beta-sheet; the interdimer bonding is evidently sustained through this portion of the molecule. Finally, the globular head consists of the carboxy-terminal domains (which contain the receptor-binding sites) folded into compact globular conformations; in appropriate side views, the head is resolved into two subunits, presumably contributed by the respective dimers. This model for how the four sigma 1 polypeptide chains are threaded in parallel through the fiber is supported by the observed match between an empirical curvature profile, which identifies the locations of relatively flexible sites along the tail, and the flexibility profile predicted on the basis of the model. Appraisal of the interactions that stabilize the coiled coils suggests that (i) the alpha-helices are individually only marginally stable, a property that may be of significance with regard to the retracted conformation in which sigma 1 is accommodated in the intact virion, and (ii) the predominant interactions between the two coiled coils are likely to involve hydrogen bonding between patches of uncharged residues.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference40 articles.

1. High-level synthesis of biologically active reovirus protein a1 in a mammalian expression vector system;Banerjea A. C.;Virology,1988

2. Sequence of reovirus haemagglutinin predicts a coiled-coil structure;Bassel-Duby R.;Nature (London),1985

3. Evidence that the sigma 1 protein of reovirus serotype 3 is a multimer;Bassel-Duby R.;J. Virol.,1987

4. Sequences of the S1 genes of the three serotypes of reovirus;Cashdollar L. W.;Proc. Natl. Acad. Sci. USA,1985

5. Conformational parameters for amino acids in helical, 13-sheet, and random coil regions calculated from proteins;Chou P. Y.;Biochemistry,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3