Site-directed mutagenesis of the proposed catalytic amino acids of the Sindbis virus capsid protein autoprotease

Author:

Hahn C S1,Strauss J H1

Affiliation:

1. Division of Biology, California Institute of Technology, Pasadena 91125.

Abstract

The structural proteins of Sindbis virus are translated as a polyprotein precursor that is cleaved upon translation. The capsid protein is postulated to be a serine protease that releases itself from the N terminus of the nascent polyprotein by autoproteolysis. We have tested the importance in autoproteolysis of His-141, Asp-147, and Ser-215, previously postulated to form the catalytic triad of the protease, and of Asp-163. Several site-specific mutations were constructed at each of these positions, and the release of the capsid protein during translation in a cell-free system was examined. Because proteolysis occurs in cis during translation, the kinetics of release cannot be determined in this system, but the extent of proteolysis can be ascertained. Ser-215 appears to be the catalytic serine of the proteinase. Cys or Thr could substitute inefficiently for Ser-215, but substitution with Ala or Ile led to complete loss of activity. His-141 was also important for proteolysis. Substitution with Ala or Pro led to total loss of activity. Surprisingly, substitution with Arg resulted in complete proteolysis in vitro. Changes at the two Asp residues resulted in complete proteolysis of the substrate in vitro. All mutations that resulted in at least partial cleavage in vitro were incorporated into a full-length clone of Sindbis virus and an attempt was made to recover mutant virus. All changes tested were lethal for the virus except Asp-163 to Asn. Thus, production of infectious virus is either a more sensitive measure of the catalytic rate than the extent of in vitro cleavage, or these residues have necessary functions in addition to their possible role in proteolysis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3