Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein

Author:

Burns J L1,Clark D K1

Affiliation:

1. Division of Infectious Disease, Children's Hospital and Medical Center, Seattle, Washington.

Abstract

The most common mechanism of antibiotic resistance in multiply resistant Pseudomonas cepacia is decreased porin-mediated outer membrane permeability. In some gram-negative organisms this form of antibiotic resistance can be induced by growth in the presence of weak acids, such as salicylates, which suppress porin synthesis. To determine the effects of salicylates on outer membrane permeability of P. cepacia, a susceptible laboratory strain, 249-2, was grown in 10 mM sodium salicylate. Antibiotic susceptibility and uptake, as well as outer membrane protein patterns, were compared between strain 249-2 grown with and without salicylates. The MICs of chloramphenicol, trimethoprim, ciprofloxacin, and ceftazidime were compared between organisms grown in standard and salicylate-containing medium and are as follows: chloramphenicol, 12.5 versus 100 micrograms/ml; trimethoprim, 0.78 versus 3.125 micrograms/ml; ciprofloxacin, 0.4 versus 1.56 micrograms/ml; ceftazidime, 3.125 versus 3.125 micrograms/ml. The permeability of beta-lactam antibiotics was calculated from the rate of hydrolysis of the chromogenic cephalosporin, PADAC. There was no significant difference between strains grown in the presence and absence of salicylate. By using high-pressure liquid chromatography quantitation of loss from culture medium, the effect of 10 mM salicylate on the cellular permeability of chloramphenicol was measured in strain 249-2 by introduction of a plasmid which encodes production of chloramphenicol acetyltransferase. After 1 h of incubation, 18.5% +/- 1.54% versus 70.1% +/- 3.52%, and after 2 h, 4.20% +/- 1.65% versus 41.90% +/- 2.16% remained in supernatants from organisms grown in the absence and presence of 10 mM salicylate, respectively. Outer membrane protein pattern analysis demonstrated the absence of a protein of apparent molecular weight of 40,000 when strain 249-2 was grown in the presence of 10 mM salicylate. To determine whether this protein functioned as a porin, reconstituted membrane vesicles were constructed to assess antibiotic permeability. Vesicles constructed with this salicylate-suppressible outer membrane protein (OpcS) were permeable to chloramphenicol but not to penicillin G. These findings suggest that OpcS is a selective, antibiotic-permeable porin which can be suppressed by growth in the presence of salicylate. Further investigation will be required to determine the biochemical effects of salicylate on porin synthesis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3