Author:
Suzuki Takahiro,Yamaguchi Hiroaki,Ogura Jiro,Kobayashi Masaki,Yamada Takehiro,Iseki Ken
Abstract
ABSTRACTInterest has recently been shown again in colistin because of the increased prevalence of infections caused by multidrug-resistant Gram-negative bacteria. Although the potential for nephrotoxicity is a major dose-limiting factor in colistin use, little is known about the mechanisms that underlie colistin-induced nephrotoxicity. In this study, we focused on an endocytosis receptor, megalin, that is expressed in renal proximal tubules, with the aim of clarifying the role of megalin in the kidney accumulation and nephrotoxicity of colistin. We examined the binding of colistin to megalin by using a vesicle assay. The kidney accumulation, urinary excretion, and concentrations in plasma of colistin in megalin-shedding rats were also evaluated. Furthermore, we examined the effect of megalin ligands and a microtubule-depolymerizing agent on colistin-induced nephrotoxicity. We found that cytochromec, a typical megalin ligand, inhibited the binding of colistin to megalin competitively. In megalin-shedding rats, renal proximal tubule colistin accumulation was decreased (13.5 ± 1.6 and 21.3 ± 2.6 μg in megalin-shedding and control rats, respectively). Coadministration of colistin and cytochromecor albumin fragments resulted in a significant decrease in urinaryN-acetyl-β-d-glucosaminidase (NAG) excretion, a marker of renal tubular damage (717.1 ± 183.9 mU/day for colistin alone, 500.8 ± 102.4 mU/day for cytochromecwith colistin, and 406.7 ± 156.7 mU/day for albumin fragments with colistin). Moreover, coadministration of colistin and colchicine, a microtubule-depolymerizing agent, resulted in a significant decrease in urinary NAG excretion. In conclusion, our results indicate that colistin acts as a megalin ligand and that megalin plays a key role in the accumulation in the kidney and nephrotoxicity of colistin. Megalin ligands may be new targets for the prevention of colistin-induced nephrotoxicity.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献