Chromatin Remodeling Complex Interacts with ADD1/SREBP1c To Mediate Insulin-Dependent Regulation of Gene Expression

Author:

Lee Yun Sok12,Sohn Dong Hyun123,Han Daehee123,Lee Han-Woong4,Seong Rho Hyun123,Kim Jae Bum12

Affiliation:

1. Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea

2. Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, South Korea

3. Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea

4. Sung Kyun Kwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea

Abstract

ABSTRACT Insulin plays a critical role in whole-body energy homeostasis by regulating lipid and glucose metabolism. In fat and liver tissues, ADD1/SREBP1c is a key transcription factor to mediate insulin-dependent regulation of gene expression. Although transcriptional and proteolytic activation of ADD1/SREBP1c has been studied intensively, the mechanism by which insulin regulates expression of its target genes with ADD1/SREBP1c at the chromatin level is unclear. Here, we reveal that SWI/SNF chromatin remodeling factors interact with the ADD1/SREBP1c and actively regulate insulin-dependent gene expression. Insulin enhanced recruitment of SWI/SNF chromatin remodeling factors to its target gene promoters with concomitant changes in the chromatin structures as well as gene expression. Furthermore, in vivo overexpression of BAF155/SRG3, a component of the SWI/SNF complex, substantially promoted insulin target gene expression and insulin sensitivity. Taken together, our results suggest that the SWI/SNF chromatin remodeling complexes confer not only insulin-dependent gene expression but also insulin sensitivity in vivo via interaction with ADD1/SREBP1c.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3