Interferon Kappa Inhibits Human Papillomavirus 31 Transcription by Inducing Sp100 Proteins

Author:

Habiger Christina1,Jäger Günter2,Walter Michael2,Iftner Thomas1,Stubenrauch Frank1

Affiliation:

1. Division of Experimental Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany

2. Institute of Medical Genetics and Applied Genomics, MFT Services, University Hospital Tübingen, Tübingen, Germany

Abstract

ABSTRACT High-risk human papillomaviruses (hr-HPV) establish persistent infections in keratinocytes, which can lead to cancer of the anogenital tract. Interferons (IFNs) are a family of secreted cytokines that induce IFN-stimulated genes (ISGs), many of which display antiviral activities. Transcriptome studies have indicated that established hr-HPV-positive cell lines display a reduced expression of ISGs, which correlates with decreased levels of interferon kappa (IFN-κ), a type I IFN constitutively expressed in keratinocytes. Prior studies have also suggested that IFN-β has anti-hr-HPV activity but the underlying mechanisms are not well understood. The downregulation of IFN-κ by hr-HPV raises the possibility that IFN-κ has anti-HPV activity. Using doxycycline-inducible IFN-κ expression in CIN612-9E cells, which maintain extrachromosomally replicating HPV31 genomes, we demonstrated that IFN-κ inhibits the growth of these cells and reduces viral transcription and replication. Interestingly, the initiation of viral early transcription was already inhibited at 4 to 6 h after IFN-κ expression. This was also observed with recombinant IFN-β, suggesting a common mechanism of IFNs. Transcriptome sequencing (RNA-seq) analysis identified 1,367 IFN-κ-regulated genes, of which 221 were modulated >2-fold. The majority of those (71%) matched known ISGs, confirming that IFN-κ acts as a bona fide type I IFN in hr-HPV-positive keratinocytes. RNA interference (RNAi) and cotransfection experiments indicated that the inhibition of viral transcription is mainly due to the induction of Sp100 proteins by IFN-κ. Consistent with published data showing that Sp100 acts as a restriction factor for HPV18 infection, our results suggest that hr-HPV target IFN-κ to prevent Sp100 expression and identify Sp100 as an ISG with anti-HPV activity. IMPORTANCE High-risk HPV can establish persistent infections which may progress to anogenital cancers. hr-HPV interfere with the expression of interferon (IFN)-stimulated genes (ISGs), which is due to reduced levels of IFN-κ, an IFN that is constitutively expressed in human keratinocytes. This study reveals that IFN-κ rapidly inhibits HPV transcription and that this is due to the induction of Sp100 proteins. Thus, Sp100 represents an ISG for hr-HPV.

Funder

Wilhelm-Sander-Stiftung

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3