ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex

Author:

Horiuchi J1,Silverman N1,Marcus G A1,Guarente L1

Affiliation:

1. Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.

Abstract

Mutations in yeast ADA2, ADA3, and GCN5 weaken the activation potential of a subset of acidic activation domains. In this report, we show that their gene products form a heterotrimeric complex in vitro, with ADA2 as the linchpin holding ADA3 and GCN5 together. Further, activation by LexA-ADA3 fusions in vivo are regulated by the levels of ADA2. Combined with a prior observation that LexA-ADA2 fusions are regulated by the levels of ADA3 (N. Silverman, J. Agapite, and L. Guarente, Proc. Natl. Acad. Sci. USA 91:11665-11668, 1994), this finding suggests that these proteins also form a complex in cells. ADA3 can be separated into two nonoverlapping domains, an amino-terminal domain and a carboxyl-terminal domain, which do not separately complement the slow-growth phenotype or transcriptional defect of a delta ada3 strain but together supply full complementation. The carboxyl-terminal domain of ADA3 alone suffices for heterotrimeric complex formation in vitro and activation of LexA-ADA2 in vivo. We present a model depicting the ADA complex as a coactivator in which the ADA3 amino-terminal domain mediates an interaction between activation domains and the ADA complex.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3