Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein

Author:

Sadovsky Y1,Webb P1,Lopez G1,Baxter J D1,Fitzpatrick P M1,Gizang-Ginsberg E1,Cavailles V1,Parker M G1,Kushner P J1

Affiliation:

1. Metabolic Research Unit, University of California, San Francisco 94143.

Abstract

We investigated how overexpression of human TATA-box-binding protein (TBP) affects the action of estrogen receptor (ER) and compared the response with that of other activators. When ER activates a simple promoter, consisting of a response element and either the collagenase or tk TATA box, TBP overexpression potentiates transcription. TBP potentiates only estrogen-induced and not basal transcription and does so independent of spacing between response element and TATA box. TBP overexpression also reduces autoinhibition by overexpressed ER, suggesting that one target of the autoinhibition may be TBP itself. Both AF-1 and AF-2 domains of ER are potentiated by TBP, and each domain binds TBP in vitro. Like ER, chimeric GAL4/VP16 and GAL4/Tat activators are also potentiated by TBP, as is the synergistic activation by ER and GAL4/VP16 on a complex promoter. Unlike ER, GAL4/Sp1 and GAL4/NF-I become less potent when TBP is overexpressed. Furthermore, synergy between ER and Sp1 or between ER and NF-I, whether these are supplied by transfected GAL4 fusions or by the endogenous genes, is inhibited by TBP overexpression. Thus, ER resembles VP16 in response to TBP overexpression and is different from Sp1 and NF-I, which predominate over ER in setting the response on complex promoters.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3