Analysis of the yeast transcription factor TFIIA: distinct functional regions and a polymerase II-specific role in basal and activated transcription

Author:

Kang J J1,Auble D T1,Ranish J A1,Hahn S1

Affiliation:

1. Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Abstract

To probe the structure and function of the Saccharomyces cerevisiae general transcription factor TFIIA, we have systematically mutagenized the genes encoding both subunits and analyzed the effects of the mutations both in vivo and in vitro. We found that the central nonconserved region of the large subunit is not essential for function and likely acts as a spacer between the conserved N- and C-terminal regions. Deletion mutagenesis of the large subunit defined a region which is required for TATA binding protein (TBP) interaction. Alanine scanning mutagenesis defined a cluster of four basic residues which are likely required for interaction with DNA in the TBP-DNA complex. Much of the conserved regions of both subunits is required for subunit association, suggesting that these conserved regions fold into compact domains which extensively interact. In vitro transcription performed with extracts from yeast strains with mutations in either the large or the small TFIIA subunit demonstrated that TFIIA stimulates both basal and activated polymerase II (Pol II) transcription. The TFIIA-depleted extracts have normal Pol I and Pol III transcription activity, showing that TFIIA is a Pol II-specific factor. In vivo depletion of TFIIA activity reduced transcription from four different Pol II promoters. Finally, alanine scanning mutagenesis of TFIIA's small subunit has identified at least one mutation which is defective in transcription but which is not defective in subunit association or binding to TBP or TBP-DNA complexes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3