Artificial Transmembrane Oncoproteins Smaller than the Bovine Papillomavirus E5 Protein Redefine Sequence Requirements for Activation of the Platelet-Derived Growth Factor β Receptor

Author:

Talbert-Slagle Kristina1,Marlatt Sara2,Barrera Francisco N.3,Khurana Ekta3,Oates Joanne4,Gerstein Mark3,Engelman Donald M.3,Dixon Ann M.4,DiMaio Daniel235

Affiliation:

1. Department of Epidemiology and Public Health, P.O. Box 208034

2. Department of Genetics, P.O. Box 208005

3. Department of Molecular Biophysics & Biochemistry, P.O. Box 208114

4. Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom

5. Department of Therapeutic Radiology, P.O. Box 208040, Yale University School of Medicine, New Haven, Connecticut 06520

Abstract

ABSTRACT The bovine papillomavirus E5 protein (BPV E5) is a 44-amino-acid homodimeric transmembrane protein that binds directly to the transmembrane domain of the platelet-derived growth factor (PDGF) β receptor and induces ligand-independent receptor activation. Three specific features of BPV E5 are considered important for its ability to activate the PDGF β receptor and transform mouse fibroblasts: a pair of C-terminal cysteines, a transmembrane glutamine, and a juxtamembrane aspartic acid. By using a new genetic technique to screen libraries expressing artificial transmembrane proteins for activators of the PDGF β receptor, we isolated much smaller proteins, from 32 to 36 residues, that lack all three of these features yet still dimerize noncovalently, specifically activate the PDGF β receptor via its transmembrane domain, and transform cells efficiently. The primary amino acid sequence of BPV E5 is virtually unrecognizable in some of these proteins, which share as few as seven consecutive amino acids with the viral protein. Thus, small artificial proteins that bear little resemblance to a viral oncoprotein can nevertheless productively interact with the same cellular target. We speculate that similar cellular proteins may exist but have been overlooked due to their small size and hydrophobicity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3