Analysis of envelope sequence variants suggests multiple mechanisms of mother-to-child transmission of human immunodeficiency virus type 1

Author:

Briant L1,Wade C M1,Puel J1,Brown A J1,Guyader M1

Affiliation:

1. Laboratoire de Virologie, Centre Hospitalo-Universitaire Purpan, Toulouse, France.

Abstract

In order to elucidate the molecular mechanisms involved in human immunodeficiency virus type 1 (HIV-1) mother-to-child transmission, we have analyzed the genetic variation within the V3 hypervariable domain and flanking regions of the HIV-1 envelope gene in four mother-child transmission pairs. Phylogenetic analysis and amino acid sequence comparison were performed on cell-associated viral sequences derived from maternal samples collected at different time points during pregnancy, after delivery, and from child samples collected from the time of birth until the child was approximately 1 year of age. Heterogeneous sequence populations were observed to be present in all maternal samples collected during pregnancy and postdelivery. In three newborns, viral sequence populations obtained within 2 weeks after birth revealed a high level of V3 sequence variability. In contrast, V3 sequences obtained from the fourth child (diagnosed at the age of 1 month) displayed a more restricted heterogeneity. The phylogenetic analysis performed for each mother-child sequence set suggested that several mechanisms may potentially be involved in HIV-1 vertical transmission. For one pair, child sequences were homogeneous and clustered in a single branch within the phylogenetic tree, consistent with selective transmission of a single maternal variant. For the other three pairs, the child sequences were more heterogeneous and clustered in several separate branches within the tree. In these cases, it appeared likely that more than one maternal variant was responsible for infection of the child. In conclusion, no single mechanism can account for mother-to-child HIV-1 transmission; both the selective transmission of a single maternal variant and multiple transmission events may occur.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3