Rotavirus Serotype G9 Strains Belonging to VP7 Gene Phylogenetic Sequence Lineage 1 May Be More Suitable for Serotype G9 Vaccine Candidates than Those Belonging to Lineage 2 or 3

Author:

Hoshino Yasutaka1,Jones Ronald W.1,Ross Jerri1,Honma Shinjiro1,Santos Norma2,Gentsch Jon R.3,Kapikian Albert Z.1

Affiliation:

1. Epidemiology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland

2. Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

3. Viral Gastroenteritis Section, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia

Abstract

ABSTRACT A safe and effective group A rotavirus vaccine that could prevent severe diarrhea or ameliorate its symptoms in infants and young children is urgently needed in both developing and developed countries. Rotavirus VP7 serotypes G1, G2, G3, and G4 have been well established to be of epidemiologic importance worldwide. Recently, serotype G9 has emerged as the fifth globally common type of rotavirus of clinical importance. Sequence analysis of the VP7 gene of various G9 isolates has demonstrated the existence of at least three phylogenetic lineages. The goal of our study was to determine the relationship of the phylogenetic lineages to the neutralization specificity of various G9 strains. We generated eight single VP7 gene substitution reassortants, each of which bore a single VP7 gene encoding G9 specificity of one of the eight G9 strains (two lineage 1, one lineage 2 and five lineage 3 strains) and the remaining 10 genes of bovine rotavirus strain UK, and two hyperimmune guinea pig antisera to each reassortant, and we then analyzed VP7 neutralization characteristics of the eight G9 strains as well as an additional G9 strain belonging to lineage 1; the nine strains were isolated in five countries. Antisera to lineage 1 viruses neutralized lineage 2 and 3 strains to at least within eightfold of the homotypic lineage viruses. Antisera to lineage 2 virus neutralized lineage 3 viruses to at least twofold of the homotypic lineage 2 virus; however, neutralization of lineage 1 viruses was fourfold (F45 and AU32) to 16- to 64-fold (WI61) less efficient. Antisera to lineage 3 viruses neutralized the lineage 2 strain 16- to 64-fold less efficiently, the lineage 1 strains F45 and AU32 8- to 128-fold less efficiently, and WI61 (prototype G9 strain) 128- to 1,024-fold less efficiently than the homotypic lineage 3 viruses. These findings may have important implications for the development of G9 rotavirus vaccine candidates, as the strain with the broadest reactivity (i.e., a prime strain) would certainly be the ideal strain for inclusion in a vaccine.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference53 articles.

1. Advisory Committee on Immunization Practices. 1999. Rotavirus vaccine for the prevention of rotavirus gastroenteritis among children. Morb. Mortal. Wkly. Rep.48:1-23.

2. Emergence of G9 P[6] Human Rotaviruses in Argentina: Phylogenetic Relationships among G9 Strains

3. Bresee, J. S., R. I. Glass, B. Ivanoff, and J. R. Gentsch. 1999. Current status and future priorities for rotavirus vaccine development, evaluation and implementation in developing countries. Vaccine17:2207-2222.

4. Specific interactions between rotavirus outer capsid proteins VP4 and VP7 determine expression of a cross-reactive, neutralizing VP4-specific epitope

5. Clark, H. F., Y. Hoshino, L. M. Bell, J. Groff, G. Hess, P. Bachman, and P. A. Offit. 1987. Rotavirus isolate WI61 representing a presumptive new human serotype. J. Clin. Microbiol.25:1757-1762.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3