Loss of N-Linked Glycosylation from the Hemagglutinin- Neuraminidase Protein Alters Virulence of Newcastle Disease Virus

Author:

Panda Aruna1,Elankumaran Subbiah1,Krishnamurthy Sateesh1,Huang Zhuhui1,Samal Siba K.1

Affiliation:

1. Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland 20742

Abstract

ABSTRACT The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is an important determinant of its virulence. We investigated the role of each of the four functional N-linked glycosylation sites (G1 to G4) of the HN glycoprotein of NDV on its pathogenicity. The N-linked glycosylation sites G1 to G4 at residues 119, 341, 433, and 481, respectively, of a moderately pathogenic NDV strain Beaudette C (BC) were eliminated individually by site-directed mutagenesis on a full-length cDNA clone of BC. A double mutant (G12) was also created by eliminating the first and second glycosylation sites at residues 119 and 341, respectively. Infectious virus was recovered from each of the cDNA clones of the HN glycoprotein mutants, employing a reverse genetics technique. There was a greater delay in the replication of G4 and G12 mutant viruses than in the parental virus. Loss of glycosylation does not affect the receptor recognition by HN glycoprotein of NDV. The neuraminidase activity of G4 and G12 mutant viruses and the fusogenicity of the G4 mutant virus were significantly lower than those of the parental virus. The fusogenicity of the double mutant virus (G12) was significantly higher than that of the parental virus. Cell surface expression of the G4 virus HN was significantly lower than that of the parental virus. The antigenic reactivities of the mutants to a panel of monoclonal antibodies against the HN protein indicated that removal of glycosylation from the HN protein increased (G1, G3, and G12) or decreased (G2 and G4) the formation of antigenic sites, depending on their location. In standard tests to assess virulence in chickens, all of the glycosylation mutants were less virulent than the parental BC virus, but the G4 and G12 mutants were the least virulent.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference47 articles.

1. Alexander, D. J. 1989. Newcastle disease, p. 114-120. In H. G. Purchase, L. H. Arp, C. H. Domermuth, and J. E. Pearson (ed.), A laboratory manual for the isolation and identification of avian pathogens, 3rd ed. American Association for Avian Pathologists, Inc., Kennett Square, Pa.

2. Alexander, D. J. 1997. Newcastle disease and other avian Paramyxoviridae infection, p. 541-569. In B. W. Calnek (ed.), Diseases of poultry, 10th ed. Iowa State University Press, Ames.

3. Alexander, S., and J. H. Elder. 1984. Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. Science226:1328-1330.

4. Back, N. K. T., L. Smit, J. J. De Jong, W. Keulen, M. Schutten, J. Goudsmit, and M. Tersmette. 1994. An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology199:431-438.

5. Bagai, S., and R. A. Lamb. 1995. Individual roles in N-linked oligosaccharide chains in the intracellular transport of the paramyxovirus SV5 fusion protein. Virology209:250-256.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3