Affiliation:
1. Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington
Abstract
ABSTRACT
Equine infectious anemia virus (EIAV) is a lentivirus that causes persistent infection in horses. The appearance of antigenically distinct viral variants during recurrent viremic episodes is thought to be due to adaptive immune selection pressure. To test this hypothesis, we evaluated envelope SU cloned sequences from five severe combined immunodeficient (SCID) foals infected with EIAV. Within the SU hypervariable V3 region, 8.5% of the clones had amino acid changes, and 6.4% had amino acid changes within the known cytotoxic T lymphocyte (CTL) epitope Env-RW12. Of all the SU clones, only 3.1% had amino acid changes affecting potential N-linked glycosylation sites. In contrast, a much higher degree of variation was evident in SU sequences obtained from four EIAV-infected immunocompetent foals. Within V3, 68.8% of the clones contained amino acid changes, and 50% of the clones had amino acid changes within the Env-RW12 CTL epitope. Notably, 31.9% of the clones had amino acid changes affecting one or more glycosylation sites. Marked amino acid variation occurred in cloned SU sequences from an immune-reconstituted EIAV-infected SCID foal. Of these clones, 100% had amino acid changes within V3, 100% had amino acid changes within Env-RW12, and 97.5% had amino acid changes affecting glycosylation sites. Analysis of synonymous and nonsynonymous nucleotide substitutions revealed statistically significant differences between SCID and immunocompetent foals and between SCID foals and the reconstituted SCID foal. Interestingly, amino acid selection at one site occurred independently of adaptive immune status. Not only do these data indicate that adaptive immunity primarily drives the selection of EIAV SU variants, but also they demonstrate that other selective forces exist during acute infection.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献