Adaptive Immunity Is the Primary Force Driving Selection of Equine Infectious Anemia Virus Envelope SU Variants during Acute Infection

Author:

Mealey Robert H.1,Leib Steven R.1,Pownder Sarah L.1,McGuire Travis C.1

Affiliation:

1. Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington

Abstract

ABSTRACT Equine infectious anemia virus (EIAV) is a lentivirus that causes persistent infection in horses. The appearance of antigenically distinct viral variants during recurrent viremic episodes is thought to be due to adaptive immune selection pressure. To test this hypothesis, we evaluated envelope SU cloned sequences from five severe combined immunodeficient (SCID) foals infected with EIAV. Within the SU hypervariable V3 region, 8.5% of the clones had amino acid changes, and 6.4% had amino acid changes within the known cytotoxic T lymphocyte (CTL) epitope Env-RW12. Of all the SU clones, only 3.1% had amino acid changes affecting potential N-linked glycosylation sites. In contrast, a much higher degree of variation was evident in SU sequences obtained from four EIAV-infected immunocompetent foals. Within V3, 68.8% of the clones contained amino acid changes, and 50% of the clones had amino acid changes within the Env-RW12 CTL epitope. Notably, 31.9% of the clones had amino acid changes affecting one or more glycosylation sites. Marked amino acid variation occurred in cloned SU sequences from an immune-reconstituted EIAV-infected SCID foal. Of these clones, 100% had amino acid changes within V3, 100% had amino acid changes within Env-RW12, and 97.5% had amino acid changes affecting glycosylation sites. Analysis of synonymous and nonsynonymous nucleotide substitutions revealed statistically significant differences between SCID and immunocompetent foals and between SCID foals and the reconstituted SCID foal. Interestingly, amino acid selection at one site occurred independently of adaptive immune status. Not only do these data indicate that adaptive immunity primarily drives the selection of EIAV SU variants, but also they demonstrate that other selective forces exist during acute infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3