The N-Terminal 85 Amino Acids of the Barley Stripe Mosaic Virus γb Pathogenesis Protein Contain Three Zinc-Binding Motifs

Author:

Bragg Jennifer N.1,Lawrence Diane M.1,Jackson Andrew O.1

Affiliation:

1. Department of Plant and Microbial Biology, University of California, Berkeley, California 94720

Abstract

ABSTRACT Barley stripe mosaic virus RNAγ encodes γb, a cysteine-rich protein that affects pathogenesis. Nine of the eleven cysteines are concentrated in two clusters, designated C1 (residues 1 to 23) and C2 (residues 60 to 85), that are arranged in zinc finger-like motifs. A basic motif (BM) rich in lysine and arginine (residues 19 to 47) resides between the C1 and C2 clusters. We have demonstrated that γb binds zinc and that the C1, BM, and C2 motifs have independent zinc-binding activities. To evaluate the requirements for binding, mutations were introduced into each region. Cysteine residues at positions 7, 9, 10, 19, and 23 in the C1 motif were replaced with serines. In the BM, asparagines were substituted for lysines at positions 26 and 35, glutamine for arginine at position 25, and glycines for arginines at positions 33 and 36. The C2 mutations included cysteine replacements with serines at positions 60, 64, 71, and 81, and a histidine-to-leucine change at position 85. These mutations destroyed zinc-binding activity in each of the isolated motifs. γb derivatives containing mutations in only two of the motifs retained the ability to bind zinc, whereas a γb derivative containing mutations inactivating all three motifs destroyed the ability to bind zinc. Plants inoculated with transcripts containing combinations of the C1, BM, and C2 mutations elicited a “null” phenotype in barley characteristic of γb deletion mutants and also delayed the appearance and reduced the size of local lesions in Chenopodium amaranticolor . These results show that zinc binding of each of the motifs is critical for the biological activity of γb.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3